Features ### HIGH CURRENT CARRY AND HIGH VOLTAGE Inert gas filled arc chamber suitable for high voltage switching # **COMPACT STRUCTURE, LOW NOISE** Small, low-profile design with low noise while carrying or switching loads #### **COIL ECONOMIZER** Economized coil for low power consumption # SAFE FOR EXPLOSIVE ENVIRONMENTS No arc leakage due to a hermetically sealed design # **HIGH RELIABILITY DESIGN** Hermetic sealing creates a stable environment for high voltage switching ### NO SPECIFIC MOUNTING ARRANGEMENT Mountable in any orientation without reduction of performance ### **VARIOUS APPLICATIONS** Battery disconnect, EV charging, energy storage systems, photovoltaics, power control, circuit protection and much more # **Sealing Type: Ceramic** Cost effective high performance contactor # **Certification Information** - 1. Meet RoHS (2011/65/EU) - 2. CE certified - 3. UL approved | EXPECTED LIFE | | | | |---|----------------|--|--| | Electrical Endurance (make/
break) 300A @ 450VDC | 2,000 Cycles | | | | Electrical Endurance (make/
break) 300A @ 650VDC | 1,000 Cycles | | | | Mechanical Life | 200,000 Cycles | | | # **Current Carry Curve** Carry Current Vs Time performance (85°C) with 100mm2 conductor | OPERATE / RELEASE TIME | | | |------------------------|--------------|--| | Operate Time | ≤40ms @ 20°C | | | Release Time | ≤30ms @ 20°C | | | ENVIRONMENTAL DATA | | | | | |-----------------------|-------------|---------------------------------|--|--| | Shock | Functional | 196m/s²
Sine half-wave pulse | | | | | Destructive | 490m/s²
Sine half-wave pulse | | | | Operating Temperature | | -40°C to +85°C | | | | Humidity | | 5% to 85%RH | | | | Weight | | 1.43Lb (0.65kg) | | | | COIL DATA | | | | | |---|---------|---------|--------|--| | Nominal Voltage | 12VDC | 24VDC | 48VDC | | | Min. Holding Voltage (20°C) | 7VDC | 12.5VDC | 18VDC | | | Pick-up Voltage (20°C) | ≤9VDC | ≤18VDC | ≤36VDC | | | Drop-out Voltage (20°C) | ≥1.2VDC | ≥2.4VDC | ≥4VDC | | | Max Inrush Current (20°C,
Nominal Voltage) | 2.5A | 1.5 A | 1.3A | | | Holding Current (20°C,
Nominal Voltage) | 0.45A | 0.21A | 0.03A | | | AUX. CONTACT | | | |-------------------------|----------|--| | Aux Contact Arrangement | 1 Form A | | | Aux. Contact Resistance | ≤0.5Ω | | | Aux Contact Current Max | 2A | | #### Note: When the current is ≥2000A, no fire or explosion shall occur after the test as the acceptance requirements (Welding may occur, dielectric strength and insulation resistance may decrease). Page |2 Rev D - 27-Mar-2023 # **Outline Dimensions (mm):** ### Note: # **Application Notes** - To prevent loosening, split washers should be used whenever the contactor is installed. All terminals or conductors must be in direct contact with the contactor's main terminals. Please control the nut tightening torque of each part within the specified range in the table below. If the torque exceeds the recommended range, it may cause damage to the sealed cavity and thread damage. - Static contact torque: 53.1 70.8 lb.in (6.0-8.0 N.m) - Mounting torque: 15 30 lb.in (1.7 3.3 N.m) - 2. Products with polarity marked on the load end must be used correctly according to the product label. When the load connection polarity is reversed, the electrical characteristics in this data sheet cannot be guaranteed. - 3. Products with a coil economizer are already equipped with back EMF circuits, so there is no need to use surge protectors. - 4. Avoid installing the contactor in a strong magnetic field environment (near transformers or magnets) and avoid placing the contactor near objects with heat radiation. - 5. When continuous current is applied to the contacts of the relay, and the coil is turned on immediately after the power is cut off. At this time, as the temperature of the coil increases, the resistance of the coil will also increase, which will increase the pull-in voltage of the product, which may result in exceeding the rated pull-in voltage. In this case, the following measures should be taken to reduce the load current; limit the continuous power-on time or use a coil voltage higher than the rated pull-in voltage. - 6. When the voltage applied to the coil exceeds the maximum allowable applied voltage, the coil temperature may rise and lead to coil damage and inter-layer short circuit. - 7. The rated values in the contact parameters are values for resistive load. When using an inductive load with L/R>1ms, please connect a surge current protection device to the inductive load in parallel. If no measures are taken, the electrical life may be reduced and the continuity may be poor. Please consider sufficient margin space in the design. - 8. Coil drive power must be greater than coil power or it will reduce performance capability. - Please do not allow debris and oil to adhere to the main terminals; make sure that the main terminals are in reliable contact with the load conductor, otherwise the temperature rise of the terminal / conductor connection may be too high due to the excessive contact resistance. - 10. The load conductor must have the corresponding current load capacity and heat dissipation capacity (it is recommended to use a copper bar with a min 120mm²), to prevent overheating and affecting the life of the contactor. - 11. It is impossible to determine all the performance parameters of contactors in each specific application. Therefore, customers should choose the products matching them according to their own conditions of use. If in doubt, contact Altran. - 12. Do not use if dropped. - 13. Altran reserves the right to make changes as needed. Customers should reconfirm the contents of the specification or ask for us to supply a new specification if necessary. Page |4 Rev D - 27-Mar-2023